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THE LIGAND SUBSTITUTION PROCESSES. 
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A model for the calculation of the activation energy for the ligand substitution processes in the metal complexes, 
occuring in the polar solvents, is suggested. The model takcs into account sharp repulsion between the Iigands a t  
small distances. The structure of the transition state is analysed depending on  the sharp repulsion distance between 
the ligands, symmetry factor a, and position of the incoming group with respect to the outgoing group (cis or trans). 
I t  is shown that for certain values of the parameters cis-substitution may be preferable than trans-substitution. 

KEY WORDS: Steric Effects. Transition State. Activation Energy, Potential Energy Surface, Kinetics Ligand 
Substitution Processes. 

INTRODUCTION 

For correct quantum-mechanical calculation of the 
rate constant of the elementary act of a chemical 
reaction first and foremost information on the 
potential energy surface of the system under investi- 
gation is required. Because of the computational 
difficulties which arise in the calculation of the 
complex dynamical systems, especially those contain- 
ing heavy elements, when analysing the reactivity of 
coordination compounds it is usual, instead of 
calculating the entire surface, to  consider the structure 
and energy of the transition state of the reacting 
particles for which the choice of geometry is dictated 
mainly by intuitive considerations. But reliable 
calculations of just one such structure demand 
considerable expenditure of labour and computer 
time. So in the majority of cases they are restricted to 
qualitative or semi-quantitative analysis of changes in 
the electronic energy of the system caused by change 

?To whom correspondence should b e  addressed. 

in the non-bonding electron configuration of the 
central atom, the nature or symmetry of its surround- 
ings and the position of the molecular orbitals of the 
complex. It is not difficult to see that this approach 
ignores the entropy contribution to the free energy 
of activation, the dynamical role of the solvent on 
the reaction rate, and the role of steric effects. 

In this and subsequent reports we examine the 
significance of the above factors in the reactions of 
coordination compounds using the quantum-mechanical 
theory of reaction kinetics.' - - 3  

The quantum mechanical theory which we use 
enables us to take account of the dynamical effect of 
the solvent on the kinetics of processes in polar media, 
and also give a quantitative description both of the 
structure of the transition configuration and the pre- 
exponential factor without having detailed information 
on the potential energy surface of the system in 
question. Using quantum theory a qualitative investi- 
gation has been made of several substitution reactions 
in octahedral and quadratic complexes of transition 
r n e t a l ~ . ~ - ~  This work attempts to explain the role of 
steric factors in substitution reactions in octahedral 
complexes which proceed by an associate mechanism. 
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ACTIVATION ENERGY AND TRANSITION STATE 

(a) Qualitative Examination 

In analysing the elementary act of  reactions which take 
place in solutions it is essential t o  consider the 
potential energy surface as a function of a set of 
normal coordinates. {q}, which describe the state of  
the solvent, and a set of  coordinates (intra and inter- 
molecular), { R}, which characterize the reactants in 
the initial state and the products in the final state.' ,* 
Accordingly, the total activation energy of the 
substitution process can be represented as a sum of  
two components, one of which is related with the 
formation of  the transition configuration { q}* along 
the coordinates {q}, and the other with the formation 
of the transition configuration { R)* along the 
coordinates {R}. 

the state of the polar medium one can write for the 
transition state which is intermediate between the 
initial (Poi) and final (Pof) 

Using the polarization vector P (z (4)) t o  describe 

P* = Poi -t @(P,f ~ Poi) ( 1 )  
where cr is the factor* describing the deviation of  the 
transition configuration from the initial (final ) one. If 
a = 0, for example, then P = Poi, and if a = 1 ,  then 
P = Pof. It is much more complicated t o  calculate the 
coordinates { R)* of the transition configuration. 
This is due t o  the following reasons: 

1. The shape o f  the intermolecular potential of  
interaction between the incoming group and the 
central ion of the complex depends not only on the 
distance between them, but on the coordinates of  
the other ligands (at least two). In fact in the case 
when the effective diameter$ of  the reaction centre 
of the incoming group is greater than the difference 
between the equilibrium distance 1 (see Figure 1)  
between the centres of neighbouring ligands and the 
sum of the Van der Waals radii of  rigid frames, this 
group would experience a sharp repulsion from 
ligands (when incoming into the complex) even at 
distances considerably greater than equilibrium 
length of  the bond, if 1 is assumed t o  be fixed. It is 
obvious that sharp repulsion begins a t  smaller distance 
between the reaction centre and the central ion, if 
1 is increased either by deformation or by stretching 

- 5  

n 

F!GURE 1 The model of  an octahedral complex and 
incoming group. The circles represent the frames of  the ligand 
atoms. I is the equilibrium distance between the frames. 

of  the corresponding b0nds.t When 1 is sufficiently 
large so that the free space between the ligands is a t  
least equal t o  the diameter of  the incoming group, 
the region of  sharp repulsion begins at distances which 
d o  not exceed the length of  the metal-ligand bond. 

2. Because of the short range forces of repulsion 
the movement of the particles obeys the classical laws 
only a t  sufficiently large distances, where the potential 
changes smoothly. At the same time at  shorter 
distances (less than the sum of the Van der Waals radii 
of the rigid frames of  the atoms), when the repulsive 
potential varies very sharply, the movement of  these 
particles cannot be regarded as calssical. To check the 
validity of this let us examine the potential 
u(R ) = ( m a 2  /8) (R - a2/R)' which can be used for 
an approximation of  the profile of the potential 
energy surface along the intermolecular coordinate of  
the incoming group (for fixed values of  other 
coordinates). Here m is the reduced mass, o is the 
frequency of  particle oscillation near the minimum 
R = a .  This potential contains the left steep branch 
which describes sharp repulsion at short distances, 
and the right smooth branch (Figure 2). The exact 
quantum-statistical distribution function o n  the 
coordinates, a@), calculated for the given potential 

?As shown in 171 a coincides with the symmetry factor 

$ I t  is possible to use the values of the particles' Van der 
(see lormula (1 0)). 

Waals radii to evaluate their effective dimensions. 

*As estimates show, the ratio Edqf/Estr for the expenditure 
of energy when 1 is increased by A1 via deformation of the 
bond angle and by stretching of  the bonds is approximately 
equal to the ratio o f  the force constants kdef/kstr. 
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FIGURE 2 
steep and right smooth branches. 

has the form 

The potential curve, U(R), involving the left 

muR hwX mwRZ fiw 
2kT 

cth -1 @(R)  = - exp -- - 
A [2kT  2fi 

A = %[I + m w 2 a Z / f i ]  

where I;, is the Bessel function of imaginary argument. 
In real conditions the amplitude of zero-point 
vibrations, [fi/mw] %, is considerably less than a ,  
i.e. sharp repulsion begins quite a long way from the 
minimum. This means that X = mou2/2fi  % 1. Taking 
into account that the oscillation frequency of a 
particle’s centre of gravity in a liquid always satisfies 
the condition w < k T P ,  formula ( 2 )  can be greatly 
simplified using these assumption 

where the designations 

mw3a2  
4773 

c4 =- , l F I = J 2 m [ U ( R ) -  U@)l 

are introduced. 

distance between the particles (R 9 R )  and for 
From (3) and (4) it follows that for a large enough 

smooth interaction potential the coordinate distribution 
function coincides with the Boltzmann distribution, 
i.e. it is determined by classical statistics: the 
probability of approaching the small distances, how- 
ever, is dependent on  two factors, the classical move- 
ment to  the point R (see the last factor in (3)) and 
subsequent tunneling from point R to point R (see 
the Gamov factor in eq. (4)). 

The possibility of quantum and classical behaviour 
of a degree of freedom depending on the relation 
between the quantum energy (fiw) and kT was pointed 
0 u t . ~ 7 ~  The fact that as the incoming particle 
approaches the complex the nature of its movement 
changes from classical to quantum along the same 
coordinate was a specific feature of the reactions 
investigated. This is peculiar to movement not only 
along the intermolecular potentials, but also for the 
movement along the intramolecular potentials for 
large deformation of the bond angles; in both cases 
harmonic approach does not hold. 

The above difficulties in determining { R}* can, 
however, be overcome to some extent by using 
several simplfying suppositions. Specifically, one can 
approximate the steep branch of the potential which 
corresponds to quantum movement by an infinite 
potential barrier. In fact this approximation enables 
one to use’the classical description of particle move- 
ment in the system investigated. Another important 
simplification is based on the fact that the stretching 
force constant of skeletal ligand vibrations (kstr) for 
many transition metal complexes is considerably 
greater than the bending force constant (k,,,)? This 
results in the fact that in the transition state the 
coordinate R& of the incoming group in relation to 
the central ion almost coincides with its final 
equilibrium position R b  B, and the coordinate R; of 
the outgoing group almost coincides with the initial 
equilibrium position R b y  . This can be seen from the 
example of a symmetrical substitution reaction. In 
fact, from considerations of microscopic reversibility 
it follows that in the transition state the incoming 
and outgoing groups are located at the same distance 
from the central atom. The size of this distance is 
determined by the optimum energy expenditure on 
stretching of the M- Y bond and on deformation of 
the bond angles in the initial complex needed, as 
pointed out already, to form the free space for the 
incoming group B. The stretching of the M- Y bond 
is an alternative for the deformation of bond angles. 
But, as actual evaluation show?, for kstr /kdef  % 1 

t l t  is assumed that the coefficient a is not strictly equal to 
Oor 1 .  
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deformation of the bond angles of the complex and 
freeing of the space needed for the incoming group 
is energetically more favourable. Thus in the transition 
state all the ligands of the complex, including the 
outgoing ligand Y, and the incoming particle B are all 
at almost the same distance from the central ion. So 
the task of determining { R)* comes down to calcu- 
lating the angular coordinates of the particles { R / R } *  
in the transition state. 

I t  follows that the contribution to the activation 
energy caused by the formation of a transition con- 
figuration along coordinates { R} involves two com- 
ponents. The first, EB, represents the energy required 
for the introduction of the incoming group B from 
the solvent to the complex. The other component, 
Edef ,  describes the deformation energy of the bond 
angles in the complex from the initial equilibrium 
values to the values in the transition configuration. 
Thus the total activation energy of the process E, is 
the sum 

Ea = Esol ' E B  ' Edef  (5) 
The first component in (5) is equal to1 l 2  

Esol = a z E ,  
where Es is the reorganisation energy of the solvent. 
This result also follows directly from (1 ), if one bears 
in mind that the energy of a system with polarization 
P* is proportional to  (P*)'. The component EB is 
determined by the shape of the intermolecular inter- 
action potential and the value of displacement from 
the initial to the final eauilibrium position (Figure 3). 
It is virtually constant for 
same reaction centre. The 

a reaction series with the 
component Edef  will be 

R",' P i  P; 

I X U R E  3 
R B  coordinate. 

The profile of the potential surfaces along the 

calculated below in various models. It is not difficult, 
however, to  investigate qualitatively how it changes 
with a. 

hedron. We can then restrict ourselves to  analysing 
the positions of particles in the plane containing four 
ligands and the incoming group B. It is clear that 
when the particle B is inserted into the complex the 
nearest ligands to it are forced to move by such an 
angle x that the distance between the centre of each 
of these ligands and the centre of B is at least equal to  
the sum of the radii of their rigid frames (state I ,  
Figure 4). The magnitudes of the remaining three 
angles in the initial equilibrium position (assuming 
that the ligands are identical) are equal 2(n - x ) / 3 ,  

Let us consider attack along the edge of the octa- 

FIGURE 4 
(a) trans-substitution, (b) cis-substitution. 

The states 1; scheme of the ligand arrangement in the plane of the incoming and outgoing groups. 
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B B 

i) 

FIGURE 5 
(a) trans-substitution, (b) cis-substitution 

The states 11; scheme of the ligand arrangement in the plane of the incoming and outgoing groups. 

both in case of trans-substitution, and when the 
outgoing group is in a cis-position in relation to B. 
We shall use I1 to denote the states in which the group 
B is chemically bonded with the metal, the M-Y bond 
is broken, but Y is still in the complex (Figure Sa, b). 
In these two states the angles between Y and the 
neighbouring ligands are equal to x, and the angles 
between the remaining ligands are 2(n - x ) / 3 .  As can 
be seen from Figure Sa, b the I1 states are different for 
cis- and trans-substitution. It is not difficult to 
calculate that the difference in energies of states I and 
I1 for trans-substitution, aEtrans, and for cis- 
substitution, &$is, are 2kdef(27r - 5x) /9 and 
kdef(2n - Sx)/9 respectively, where kdef is the 
bending force constant. Since the transition state 
coincides with state I for cr = 0 and with I1 for a = 1, 
the magnitudes A.!i't,,n, and aE,i, describe the 
change in the contribution of Edef to  total activation 
energy for transition from cr = 0 t o  cr = 1. As 
evaluations show, values of x for typical atoms are 
close to 2n/S. For N and 0 atoms, for example, the 
values of x calculated using the Van der Waals radiil0 
are -70'. Consequently for these x the changes in 
aEtran, and aEcis are insignificant. In other words 
when the atoms have rigid frames with quite large 
radii, the configuration of the transition state with 
respect to  the angular coordinates of the ligands is 
almost independent on  the reaction heat, i.e., the 
component Edef  varies slightly with changing a. 

This qualitative analysis may be proved by 
quantitative calculations for various specific forms 
of the interaction potential. 

(b) Calculation of the Activation Energy 

In the model outlined above (where the movement 
of all particles in the system is classical) the activation 
energy, E,, is determined by the position of the 
saddle point on the multidimensional adiabatic surface 
U-, which is a function of the coordinates of the 
solvent, all the ligands and the central ion. Bearing in 
mind that the energies of the excited electron states 
are large, to  construct this surface it is possible, as an 
approximation to restrict oneself to basic electron 
terms (i.e. to  the lower potential energy surfaces). 
The first one, Ui, is the sum of the potential energy 
of the solvent, Vf({q)), the intramolecular energy of 
the complex MLS Y, Ufompl(RL, , RL, , . . . Ry) ,  and 
the energy of interaction of the complex ML5 Y as a 
whole with incoming group B (with no change in 
electron wave functions), vi(RB), in the initial state, 
i.e. 

Ui = Uf({q)) i- Ufompl(RLI,  R L 1 , .  . . RY) 

where li is the minimum magnitude of Ui for equi- 
librium values of the coordinates. The second potential 
energy surface, Uf is the sum of the potential energy 
of the solvent, Ufs({q}), the intramolecular energy of 
the complex MLS B, UFompl (RL,, RL, . . . RB) and the 
energy of interaction, uf(Ry), of the complex MLsB 
as a whole with the outgoing group Y in the final 
state, i.e., 

(7) i- v ~ ( R B )  i- Ii 

uf = ufr"((4)) + U ~ O ~ P ~ ( R ~ , ,  R ~ * .  . . R ~ )  
i- uf@Y 1 i- If (8) 
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Then if V is the splitting energy of the states U, and 
Ur in the region of the transition configuration, one 
can obtain the following expression for the adiabatic 
potential energy surface U -  

u-  = $(Ui  + Uf )  -$ [(Ui - Uf)2 t 4V2]"2 (9) 

In accordance with [ 1 ,  1 1 ] the coordinates { .$:} 
of the saddle point ({ t x }  includes both the coordi- 
nates of the solvent. {q) ,  and the coordinates of the 
ligands RL ,, RL,, . . . RY. RB) on the surface U-  can 
be found by solving the following equations 

(1 0) 

- Uf({fX}))2 + 4 v y  (11) 

u i ( { t x ) ) =  uf ( {Ex) )  ' (2%d - l)[(ui(itx)) 

where &ad is the symmetry factor of the adiabatic 
surface in the region of the transition configuration: 

For the substitution reactions investigated here 
equations (1 0) and ( 1  1 )  should be used only for 
calculating the saddle point on the coordinates of the 
solvent and the angular coordinates of unsubstituted 
ligand of the complex, the incoming group Band the 
outgoing ligand Y, since, as has been pointed out 
above in qualitative analysis, the radial coordinates of 
particles in the transition state are approximately 
equal to  the equilibrium length of the metal-ligand 
bond. Supposing that B attacks the edge and Y is in 
the trans-position, ( 7 )  and (8 )  can be written in the 
form 

ui = g( t q I + u (0 I + a 2  ) + 40 3 ) 

+ u(2n - w1 - 0 2  - w3 - w4) + v(w1) 

t v(w2) t vi(Rg) + Ii (13) 

Uf = LFr(tq)) + u(w1) ' 4%) + 4% + w4) 

+ n(2n - w1 - 0 2  - w3 - w4) + v(w3) 

+ V ( % ) + V f ( R t ) + I f  (14) 
In expressions (1 3) and (1 4) u(w) represents the 
potential energy of interaction of the ligands with 
each other, and v(w) the energy of repulsion between 
the chemically nonbonded particle (B in state I ;  Y in 

0 

FIGURE 6 The scheme of the angles for trans-substitution. 

state 11) and the nearest ligands of the complex to  it 
(for designations of angles see Figure 6). The 
magnitude vi(RB) E B  (see Figure 3) represents the 
contribution to  the activation energy caused by the 
formation of the transition state on the radial coor- 
dinate of the B particle. The magnitude vdR+) 
has a similar significance in relation to the correspond- 
ing coordinate for the same reaction, but in the 
reverse direction. For convenience we shall hence- 
forward count the energy on the surface Ui from its 
minimum. Then (13) and (14) can be rewritten in the 
following way by introducing the designation 

E y  

Al = If - Ii 

CJi = + U ( O ~  + ~ 2 )  + ~ ( 0 3 )  + u ( w ~ )  

+ u(2n - w1 - w2 - w3 - w4) + v(w1) 

' v(02) + EB (13') 

Uf = us + u(w1) +u(oz )  + u(w3 i- w4) 

t u(2n - w1 - 0 2  - w3 - 0 4 )  

t v(w3) + v(w4) + E y  + Al ( 14') 
Within the model of dielectrical formalism the 
potential energy of the solvent has the form [ 12, 131 

By substituting(l3'),(14'),(15)and (16) in (10) we 
can find the saddle point on the coordinates of the 
solvent 

qz = & a d q K O ,  (17) 
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l 0  

kj 
FIGURE 7 The transition states for an arbitrary a. (a) trans-substitution, (b) cis-substitution. 

The saddle point on the angular coordinates, a&, in 
the case when the outgoing group Y is in the trans- 
position in relation to  B, is determined by following 
equations 

(1 - a) u'(2q) + au'(q) + u'(2n - 2q - 2 $ )  

au'(2IJ) + (1 - a) u'($) - u'(2n - 2 q  - 2 $ )  
-t (1 - a)  u'(q) = 0 

+ au'(q) = 0 

(18) 

Here the subscript of the factor a is omitted t o  
simplify the notation, and in place of w, we have 
introduced q and 4, whose significance is clear from 
Figure 7a. 

then the set of equations for determining w, 
becomes 

If Y is adjacent to  B (cis-substitution) (Figure 7b), 

au'(q, ) + (1 - Q) u'(277 - tp2 - 24) - u'( $) 
t (1 - a )  u ' ( q l )  = 0 

( 1  - a) u'(q2) + au'(2n - q1 - 2 4 )  - u' ($)  

au'(2n - 

+ au'(q* ) = 0 

- u'(IJ) -t u'(2n - q1 - q 2  - 2 $ )  = 0 
- 2 J / )  + ( 1  - a)  u'(2n - 92 - 2 $ )  

(19) 

To solve eqs. (19) it is necessary to use some model 
approximations for the functions u and Y. It is 
important that these model functions should take 
account of the sharp repulsion between the 

encountered particles at small distances (smaller than 
the sum of their Van der Waals radii). Therefore we 
choose the following model approximation for u 
and u. 

u ( w ) = -  0-- 

u(w) = 0, 

v(w) = (7/2)(w - X I 2 ,  

2 

(20) W > X  

( ;)2 

u(w) = (y/2)(o - a)* t b 

< x 

Besides we shall put k / y  -, 0 in the final expressions, 
that means the use of the hards sphere approximation. 

Y I 

1 

I 
vz ' 

FIGURE 8 
eqs. (18). 

The notation x - (Y diagram for solution of 
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TABLL 1 
Contribution to  the activation cncrgy, Edef, due t o  distortion 0 1  the complex by incoming group 
during the formation of the transition state for cis- and trans-substitution at various values of 

x and 0.3 

a = O  x 
1 

2 
a = -  

ll 4n kn' 
o < x < - -  - 

1 1  22 
o < x < -  0 

n 4 R  2 R  k n 2  kn' ( 4 x  - I ) '  
- < x < -  
4 S 2 3  1 1  S 

,+.trans 4 
-def 

_ -  < < - (22x' - 16x + 3)  ____ 2 H  

2 

2n 2n 
S 5 

25x2 - 20x + 4 X - -  &/y -. L$& 0 < x < -- 0 

" x  = x/n 

The final solutionst of eqs. (1 8) in the regon of 
values 0 < a < f (Figure 8) have the form: (the 
region 1 > a  > 4 is equivalent t o  the region 
0 > a > 4 for the reverse reaction) 

2n(2 - a )  G* = 
8 + ~ r - a '  

2741 + a) 2n <x<-: p*= X .  
2, 8 t a - a '  5+a 

As was pointed out above x =Z 2 ~ 1 5 ,  which corresponds 
to the solution in the region 3.  In this region the 
angles (p* and $* are independent of a, this confirms 
the statement made earlier o n  the basis of qualitative 
considerations that the structure of the transition 
configuration o n  angular variables is independent of 

+To simplily the calculations we shall assume that the 
angle x is approsimately the same lor all ligands L, for B 
and Y. 

the symmetry factor a. Solving Eqs. (1  9) for cis- 
substitution with arbitrary values of @ is a niore 
difficult task. Here the cases with (11 = 0 and a = 1/2 
were the only two studied. For (11 = 0 the angles (p* 

and $* are cp* = n/4, $* = n/2 if 0 < x < n/4 and 
cp* = x, J/* = $(n - x) if n/4 < x < $11. The solutions 
for a = f have the form: cp* =(n ~ x / 2 ) ,  $* = (n/2) ,  if 
0 < x < n/3 and cp* = x, $* $(n - x ) ,  if 
nI3 < x < 2nI5. 

saddle point for trans-substitution we obtain an 
expression for the activation energy in the form 

E, = a2Es t EB + u(2q*) + 2u($*) 

By substituting in ( I  3') the coordinates of the 

+ u(2n - 2'* - 2 $ * )  + 2V('*) (24) 
= Q ' E ~  +E,+E,j,f(Y) 

Solving equation (1 1 )  to determine a, assuming that 
V < Es, leads t o  the following expression for 

) ( 2 5 )  
2 v  

a = l / 2 t -  I t - *  z"E', ( Es [ l  -AJ/ES]'i2 
where 

AJ= Af t b y  + EB + Edef(B) - E d e f ( Y )  
in  expression (24) Edef( B) represents the expenditure 
of energy for deformation of  the angles between the 
ligands needed t o  achieve the transition state like the 
magnitude Ed#) in the direct reaction. If 
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2 VIES -4 1,  the expression for Ea takes the form 

- I/ [ 1 - (3 "2 

The value of Es in Eq. (26) in general depends on the 
direction of attack of the incoming group, since the 
redistribution of charges in the system is different for 
cis- and trans-substitution. This factor may play an 
important role in some reactions. But it is possible to  
neglect this factor if one assumes that the ligands 
which take part in the reaction have almost identical 
properties. The value of the energy E B  may be 
different depending on the nature of the incoming 
agent B, the central atoms and the ligands between 
which B enters. In the model examined it is assumed 
that E ,  is independent of the direction of attack. 

of the reaction (cis or trans-substitution) is determined 
by the term E d e f .  Comparing the results shown in 
Table 1 one can make the following conclusions: 

1) If the transition state is close to the initial one 
(a - 0), steric factors have an affect on the direction 
of the process. In the class of reactions investigated 
this is hardly probable. 

2 )  For values a - 1/2 the expenditure due to 
steric factors for cis-substitution is less than for trans- 
substitution (apart from the case when x is exactly to  
2 ~ 1 5 ) .  Numerical evaluation shows that for reasonable 
values of x and force constants (e.g. for x = I .9n/5 
and k = 5.103 dynes/cm) the ratio of rates for cis- 
and trans-substitution may reach -1 5. 

In order to clarify the role of steric factors in 

Consequently for the restrictions adopted the path 

substitution processes we have used a considerably 
idealised model which does not take full account of 
the differences in the properties of ligands, the 
specific nature of the central ion, etc. By developing 
the theory it is possible in principle to take account 
of all these factors and we hope to analyse their 
influence on the kinetics of reactions in coordination 
compounds. 
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